

Mark Scheme (Results)

Summer 2016

Pearson Edexcel GCE in Core Mathematics 1 (6663/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2016 Publications Code 6663_01_1606_MS All the material in this publication is copyright © Pearson Education Ltd 2016

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking (But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2+bx+c) = (x+p)(x+q)$$
, where $pq = |c|$, leading to x = ...

$$(ax^2+bx+c) = (mx+p)(nx+q)$$
, where $pq = |c|$ and $|mn| = |a|$, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

A1A1
[4]

Question Number	Scheme	Notes	Marks
2	$9^{3x+1} = \text{ for example}$ $3^{2(3x+1)} \text{ or } (3^2)^{3x+1} \text{ or } (3^{(3x+1)})^2 \text{ or } 3^{3x+1} \times 3^{3x+1}$ $\text{ or } (3\times3)^{3x+1} \text{ or } 3^2 \times (3^2)^{3x} \text{ or } (9^{\frac{1}{2}})^y \text{ or } 9^{\frac{1}{2}y}$	Expresses 9^{3x+1} correctly as a power of 3 or expresses 3^{y} correctly as a power of 9 or expresses y correctly in terms of x	M1
	or $y = 2(3x+1)$	(This mark is <u>not</u> for just $3^2 = 9$)	
	= 3^{6x+2} or $y = 6x + 2$ or $a = 6, b = 2$	Cao (isw if necessary)	A1
	Providing there is no incorrect work, allo	w sight of $6x + 2$ to score both marks	
	Correct answer only in	mplies both marks	
	Special case: 3 ^{6x+1} on	ly scores M1A0	
			[2]
	Alternative u	using logs	
	$9^{3x+1} = 3^{y} \Longrightarrow \log 9^{3x+1} = \log 3^{y}$		
	$(3x+1)\log 9 = y\log 3$	Use power law correctly on both sides	M1
	$y = \frac{\log 9}{\log 3} (3x + 1)$		
	y = 6x + 2	cao	Al
			2 marks

Question Number	Scheme	Notes	Marks
3.(a)	$\sqrt{50} - \sqrt{18} = 5\sqrt{2} - 3\sqrt{2}$	$\sqrt{50} = 5\sqrt{2}$ or $\sqrt{18} = 3\sqrt{2}$ and the other term in the form $k\sqrt{2}$. This mark may be implied by the correct answer $2\sqrt{2}$	M1
	$= 2\sqrt{2}$	Or $a = 2$	A1
			[2]
(b) WAY 1	$\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}} = \frac{12\sqrt{3}}{"2"\sqrt{2}}$	Uses part (a) by replacing denominator by their $a\sqrt{2}$ where <i>a</i> is numeric. This is all that is required for this mark.	M1
	$=\frac{12\sqrt{3}}{"2"\sqrt{2}}\times\frac{\sqrt{2}}{\sqrt{2}}=\frac{12\sqrt{6}}{4}$	Rationalises the denominator by a correct method e.g. multiplies numerator and denominator by $k\sqrt{2}$ to obtain a multiple of $\sqrt{6}$. Note that multiplying numerator and denominator by $2\sqrt{2}$ or $-2\sqrt{2}$ is quite common and is acceptable for this mark. May be implied by a correct answer. This is dependent on the first M1.	dM1
	$= 3\sqrt{6}$ or $b = 3, c = 6$	Cao and cso	A1
			[3]
(b) WAY 2	$\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}} \times \frac{\sqrt{50} + \sqrt{18}}{\sqrt{50} + \sqrt{18}}$ or $\frac{12\sqrt{3}}{5\sqrt{2} - 3\sqrt{2}} \times \frac{5\sqrt{2} + 3\sqrt{2}}{5\sqrt{2} + 3\sqrt{2}}$	For rationalising the denominator by a correct method i.e. multiplying numerator and denominator by $k\left(\sqrt{50} + \sqrt{18}\right)$	M1
	$\frac{60\sqrt{6} + 36\sqrt{6}}{50 - 18}$	For replacing numerator by $\alpha \sqrt{6} + \beta \sqrt{6}$. This is dependent on the first M1 and there is no need to consider the denominator for this mark.	dM1
	$= 3\sqrt{6}$ or $b = 3, c = 6$	Cao and cso	A1
			[3]
(b) WAY 3	$\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}} = \frac{12\sqrt{3}}{"2"\sqrt{2}}$	Uses part (a) by replacing denominator by their $a\sqrt{2}$ where <i>a</i> is numeric. This is all that is required for this mark.	M1
	$=\frac{12\sqrt{3}}{2\sqrt{2}}=\frac{6\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{108}}{\sqrt{2}}=\sqrt{54}=\sqrt{9}\sqrt{6}$	Cancels to obtain a multiple of $\sqrt{6}$. This is dependent on the first M1.	dM1
	$= 3\sqrt{6}$ Or $b = 3, c = 6$	Cao and cso	A1
			[3]
(b) WAY 4	$\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}} = \frac{12\sqrt{3}}{"2"\sqrt{2}}$	Uses part (a) by replacing denominator by their $a\sqrt{2}$ where <i>a</i> is numeric. This is all that is required for this mark.	M1
	$\left(\frac{12\sqrt{3}}{"2"\sqrt{2}}\right)^2 = \frac{432}{8}$		
	$\sqrt{54} = \sqrt{9}\sqrt{6}$	Obtains a multiple of $\sqrt{6}$. This is dependent on the first M1.	dM1
	$= 3\sqrt{6}$ Or $b = 3, c = 6$	Cao and cso (do not allow $\pm 3\sqrt{6}$)	A1
			5 marks

Question Number	Scheme	Notes	Marks	
	Note original points are $A(-2, 4)$ and $B(3, -8)$			
4.(a)	(-2, 12) (-2, 12) (-2			
	(3, -24)	Maximum at $(-2, 12)$ and minimum at $(3, -24)$ with coordinates written the right way round. Condone missing brackets. The coordinates may appear on the sketch, or separately in the text (not necessarily referenced as <i>A</i> and <i>B</i>). If they are on the sketch, the <i>x</i> and <i>y</i> coordinates can be positioned correctly on the axes rather than given as coordinate pairs. In cases of ambiguity, the sketch has precedence. The origin does not need to be labelled. Nor do the <i>x</i> and <i>y</i> axes.	B1	
			[2]	
(b)	ſ	A positive cubic which does not pass through the origin with a maximum to the left of the <i>y</i> -axis and a minimum to the right of the <i>y</i> -axis.	M1	
	(-2, 0) (0, -4)	Maximum at (-2, 0) and minimum at (3, -12). Condone missing brackets. For the max allow just -2 or (0, -2) if marked in the correct place. If the coordinates are in the text, they must appear as (-2, 0) and must not contradict the sketch. The curve must touch the <i>x</i> -axis at (-2, 0). For the min allow coordinates as shown or 3 and -12 to be marked in the correct places on the axes. In cases of ambiguity, the sketch has precedence. Crosses y-axis at (0, -4). Allow just	A1	
	(3,-12)	-4 (not +4) and allow (-4, 0) if marked in the correct place. If the coordinates are in the text, they must appear as $(0, -4)$ and must not contradict the sketch. In cases of ambiguity, the sketch has precedence.	A1	
		<u> </u>	5 marks	

Question Number	on Scheme Notes				
	WA	AY 1			
5.	$y = -4x - 1$ $\Rightarrow (-4x - 1)^2 + 5x^2 + 2x = 0$	Attempts to makes y the subject of the linear equation and substitutes into the other equation. Allow slips e.g. substituting $y = -4x + 1$ etc.	M1		
	$21x^2 + 10x + 1 = 0$	Correct 3 term quadratic (terms do not need to be all on the same side). The "= 0" may be implied by subsequent work.	A1		
	$(7x+1)(3x+1)=0 \Longrightarrow (x=)-\frac{1}{7}, -\frac{1}{3}$	dM1: Solves a 3 term quadratic by the usual rules (see general guidance) to give at least one value for <i>x</i> . Dependent on the first method mark. A1: $(x =) - \frac{1}{7}, -\frac{1}{3}$ (two separate correct exact answers). Allow exact equivalents e.g. $(x =) - \frac{6}{42}, -\frac{14}{42}$	- dM1 A1		
	$y = -\frac{3}{7}, \frac{1}{3}$	M1: Substitutes to find at least one <i>y</i> value (Allow substitution into their rearranged equation above but not into an equation that has not been seen earlier). You may need to check here if there is no working and <i>x</i> values are incorrect. A1: $y = -\frac{3}{7}$, $\frac{1}{3}$ (two correct exact answers) Allow exact equivalents e.g. $y = -\frac{18}{42}$, $\frac{14}{42}$	M1 A1		
	Coordinates do no	ot need to be paired			
	Note that if the linear equation is explicitly r	rearranged to $y = 4x + 1$, this gives the correct			
	answers for x and possibly for y. In these cas	es, if it is not already lost, deduct the final A1.	[6]		
	WA	AV 2	լօյ		
	$x = -\frac{1}{4}y - \frac{1}{4}$ $\Rightarrow y^{2} + 5(-\frac{1}{4}y - \frac{1}{4})^{2} + 2(-\frac{1}{4}y - \frac{1}{4}) = 0$	Attempts to makes x the subject of the linear equation and substitutes into the other equation.	M1		
	$\frac{21}{16}y^2 + \frac{1}{8}y - \frac{3}{16} = 0 (21y^2 + 2y - 3 = 0)$	Correct 3 term quadratic (terms do not need to be all on the same side). The "= 0" may be implied by subsequent work	A1		
	$(7y+3)(3y-1)=0 \Longrightarrow (y=)-\frac{3}{7}, \frac{1}{3}$	dM1: Solves a 3 term quadratic by the usual rules (see general guidance) to give at least one value for y. Dependent on the first method mark. A1: $(y =) - \frac{3}{7}, \frac{1}{3}$ (two separate correct exact answers). Allow exact equivalents e.g. $(y =) - \frac{18}{42}, \frac{14}{42}$	dM1 A1		
	$x = -\frac{1}{7}, -\frac{1}{3}$	M1: Substitutes to find at least one <i>x</i> value (Allow substitution into their rearranged equation above but not into an equation that has not been seen earlier). You may need to check here if there is no working and <i>y</i> values are incorrect. A1: $x = -\frac{1}{7}$, $-\frac{1}{3}$ (two correct exact answers) Allow exact equivalents e.g. $x = -\frac{6}{42}$, $-\frac{14}{42}$	M1 A1		
	Coordinates do no	ot need to be paired			
	Note that if the linear equation is explicitly re answers for y and possibly for x. In these cas	earranged to $x = (y + 1)/4$, this gives the correct es, if it is not already lost, deduct the final A1.			
			[6]		
			6 marks		

Question Number	Scheme	Notes	Marks	
	$a_1 = 4, \ a_{n+1} = 5 - ka_n, \ n \dots 1$			
6. (a)	(a) (a) $a_2 = 5 - ka_1 = 5 - 4k$ $a_2 = 5 - ka_1 = 5 - 4k$ $a_3 = 5 - ka_2 = 5 - k(5 - 4k)$ (b) (a) M1: Uses the recurrence relation correct expressions - need relation correct expression correct		M1A1	
	3 2 ()	simplified but must be seen in (a). Allow $a_2 = 5-k4$ and $a_3 = 5-5k+k^24$ Is wif necessary for a_2		
(b)	Finds 1+1+1 or 3 somewhere in their solution (may be implied by e.g. $5 + 6 - 4k + 6 - 5k + 4k^2$). Note that $5 + 6 - 4k + 6 - 5k + 4k^2$ would score B1 and the M1 below.		B1	
	$\sum_{r=1}^{3} a_r = 4 + "5 - 4k" + "5 - 5k + 4k^2"$	Adds 4 to their a_2 and their a_3 where a_2 and a_3 are functions of k. The statement as shown is sufficient.	M1	
	$\sum_{r=1}^{3} (1+a_r) = 17 - 9k + 4k^2$	Cao but condone '= 0' after the expression	A1	
	Allow full marks in (b) for c	correct answer only		
(-)	500		[3]	
(c)	500	cao	<u>В</u>]	
			6 marks	

Question Number	Scheme Notes			
7.	$y = 3x^2 + 6x$	$\frac{1}{3} + \frac{2x^3 - 7}{3\sqrt{x}}$		
	$\frac{2x^3 - 7}{3\sqrt{x}} = \frac{2x^3}{3\sqrt{x}} - \frac{7}{3\sqrt{x}} = \frac{2}{3}x^{\frac{5}{2}} - \frac{7}{3}x^{-\frac{1}{2}}$	Attempts to split the fraction into 2 terms and obtains either $\alpha x^{\frac{5}{2}}$ or $\beta x^{-\frac{1}{2}}$. This may be implied by a correct power of x in their differentiation of one of these terms. But beware of $\beta x^{-\frac{1}{2}}$ coming from $\frac{2x^3 - 7}{3\sqrt{x}} = 2x^3 - 7 + 3x^{-\frac{1}{2}}$	M1	
	$x^n \rightarrow x^{n-1}$	Differentiates by reducing power by one for any of their powers of x	M1	
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 6x + 2x^{-\frac{2}{3}} + \frac{5}{3}x^{\frac{3}{2}} + \frac{7}{6}x^{-\frac{3}{2}}$	A1: 6x. Do not accept $6x^1$. Depends on second M mark only. Award when first seen and isw. A1: $2x^{-\frac{2}{3}}$. Must be simplified so do not accept e.g. $\frac{2}{1}x^{-\frac{2}{3}}$ but allow $\frac{2}{\sqrt[3]{x^2}}$. Depends on second M mark only. Award when first seen and isw. A1: $\frac{5}{3}x^{\frac{3}{2}}$. Must be simplified but allow e.g. $1^2x^{1.5}$ or e.g. $5\sqrt{x^3}$. Award when first seen	A1A1A1A1	
	In an otherwise fully correct solution, penalis	and isw. A1: $\frac{7}{6}x^{-\frac{3}{2}}$. Must be simplified but allow e.g. $1\frac{1}{6}x^{-\frac{1}{2}}$ or e.g. $\frac{7}{6\sqrt{x^3}}$. Award when first seen and isw. See the presence of + c by deducting the final		
	Use of Quotient Rule: First M1 and f	final A1A1 (Other marks as above)		
	$\frac{d\left(\frac{2x^{3}-7}{3\sqrt{x}}\right)}{dx} = \frac{3\sqrt{x}\left(6x^{2}\right) - \left(2x^{3}-7\right)\frac{3}{2}x^{-\frac{1}{2}}}{\left(3\sqrt{x}\right)^{2}}$	Uses <u>correct</u> quotient rule	M1	
	$=\frac{10x^{\frac{5}{2}}+7x^{-\frac{1}{2}}}{6x}$	A1: Correct first term of numerator and correct denominator A1: All correct as simplified as shown	A1A1	
	So $\frac{dy}{dx} = 6x + 2x^{-\frac{2}{3}} + \frac{10x^{\frac{2}{3}}}{3}$	$\frac{1}{6x} + 7x^{-\frac{1}{2}}$ scores full marks	6 montro	
			о шагкя	

Question Number	Scheme	Notes	Marks
8. (a)	$2px^{2} - 6px + 4p'' = "3x - 7$ or $y = 2p\left(\frac{y+7}{3}\right)^{2} - 6p\left(\frac{y+7}{3}\right) + 4p$	Either: Compares the given quadratic expression with the given linear expression using $<, >, =, \neq$ (May be implied) or Rearranges $y = 3x - 7$ to make <i>x</i> the subject and substitutes into the given quadratic	M1
	$\frac{\mathbf{Exa}}{2px^2 - 6px + 4p - 3x + 7(=0)}$ $2p\left(\frac{y+7}{3}\right)^2 - 6p\left(\frac{y+7}{3}\right) + 4p - y\left(\frac{y+7}{3}\right) + 4p - $	$\frac{1}{2px^{2} + 6px - 4p + 3x - 7(=0)}$ = 0), $2py^{2} + (10p - 9)y + 8p(=0)$ 6px + 4p - 3x + 7	dM1
	Moves all the terms to one side allowin The terms do not need to be collected	g sign errors only. Ignore $> 0, < 0, = 0$ etc. d. Dependent on the first method mark.	
	E.g. $b^2 - 4ac = (-6p - 3)^2 - 4(2p)(4p + 7)$ $b^2 - 4ac = (10p - 9)^2 - 4(2p)(8p)$	Attempts to use $b^2 - 4ac$ with their <i>a</i> , <i>b</i> and <i>c</i> where $a = \pm 2p$, $b = \pm (-6p \pm 3)$ and $c = \pm (4p \pm 7)$ or for the quadratic in <i>y</i> , $a = \pm 2p$, $b = \pm (10p \pm 9)$ and $c = \pm 8p$. This could be as part of the quadratic formula or as $b^2 < 4ac$ or as $b^2 > 4ac$ or as $\sqrt{b^2 - 4ac}$ etc. If it is part of the quadratic formula only look for use of $b^2 - 4ac$. There must be no <i>x</i> 's or <i>y</i> 's. Dependent on both method marks.	ddM1
	$4p^2 - 20p + 9 < 0 *$	Obtains printed answer with no errors seen (Allow $0 > 4p^2 - 20p + 9$) but this < 0 must been seen at some stage before the last line.	A1*
(b)	$(2p-9)(2p-1)=0 \Longrightarrow p=$ to obtain $p=$	Attempt to solve the given quadratic to find 2 values for <i>p</i> . See general guidance.	[4] M1
	$p = \frac{9}{2}, \frac{1}{2}$	Both correct. May be implied by e.g. $p < \frac{9}{2}$, $p < \frac{1}{2}$. Allow equivalent values e.g. 4.5, $\frac{36}{8}$, 0.5 etc. If they use the quadratic formula allow $\frac{20\pm16}{8}$ for this mark but not $\sqrt{256}$ for 16 and allow e.g. $\frac{5}{2}\pm2$ if they complete the square.	A1
	$\frac{1}{2} Allow equivalent values e.g. \frac{36}{8} for 4\frac{1}{2}$	M1: Chooses 'inside' region i.e. Lower Limit < p < Upper Limit or e.g. Lower Limit $\leq p \leq$ Upper Limit A1: Allow $p \in (\frac{1}{2}, 4\frac{1}{2})$ or just $(\frac{1}{2}, 4\frac{1}{2})$ and allow $p > \frac{1}{2}$ and $p < 4\frac{1}{2}$ and $4\frac{1}{2} > p > \frac{1}{2}$ but $p > \frac{1}{2}$, $p < 4\frac{1}{2}$ scores M1A0 $\frac{1}{2} > p > 4\frac{1}{2}$ scores M0A0	M1A1
	Allow working in terms of <i>x</i> in (b) but the an	swer must be in terms of <i>p</i> for the final A mark.	[4]
			8 marks

Question Number	Scheme	Notes	Marks			
9.(a)	John; arithmetic series,	a = 60, d = 15.				
	$60 + 75 + 90 = 225^*$ or $S_3 = \frac{3}{2} (120 + (3 - 1)(15)) = 225^*$	Finds and adds the first 3 terms or uses sum of 3 terms of an AP and obtains the printed answer, with no errors.	B1 *			
	Beware: The 12 th term of the sequence is 225 also so look out for $60 + (12 - 1) \times 15 = 225$. This is B0.					
	<u> </u>		[1]			
(b)	$t_9 = 60 + (n-1)15 = (\pounds)180$	M1: Uses $60 + (n-1)15$ with $n = 8$ or 9	M1 A1			
	M1: Uses $a = 60$ and $d = 15$ to select the 8 th A1: (£)18 (Special case (f)165 onl	or 9 th term (allow arithmetic slips) 0				
	(Special case (£)165 only scores M1A0)					
(c)	$S_{n} = \frac{n}{2} (120 + (n - 1)(15))$ or $S_{n} = \frac{n}{2} (60 + 60 + (n - 1)(15))$	Uses correct formula for sum of <i>n</i> terms with $a = 60$ and $d = 15$ (must be a correct formula but ignore the value they use for <i>n</i> or could be in terms of <i>n</i>)	M1			
	$S_n = \frac{12}{2} (120 + (12 - 1)(15))$	Correct numerical expression	A1			
	$=(\pounds)1710$	cao	A1			
	M1: Uses $a = 60$ and $d = 15$ and finds the sum of A2: (£)171	at least 12 terms (allow arithmetic slips)				
(4)			[3]			
(a)	$3375 = \frac{n}{2} (120 + (n-1)(15))$	Uses correct formula for sum of <i>n</i> terms with $a = 60$, $d = 15$ and puts = 3375	M1			
	$6750 = 15n(8 + (n - 1)) \Rightarrow 15n^{2} + 105n = 6750$	Correct three term quadratic. E.g. $6750 = 105n + 15n^2$, $3375 = \frac{15}{2}n^2 + \frac{105}{2}n$ This may be implied by equations such as $6750 = 15n(n+7)$ or $3375 = \frac{15}{2}(n^2 + 7n)$	A1			
	$n^2 + 7n = 25 \times 18^*$	Achieves the printed answer with no errors but must see the 450 or 450 in factorised form or e.g. 6750, 3375 in factorised form i.e. an intermediate step.	A1*			
	<u> </u>		[3]			
(e)	$n = 18 \Rightarrow \text{Aged } 27$	M1: Attempts to solve the given quadratic or states $n = 18$ A1: Age = 27 or just 27	M1 A1			
	Age = 27 only scores both marks (i.	e. $n = 18$ need not be seen)				
	Note that (e) is not hence so allow valid attem	pts to solve the given equation for M1				
			[2]			
			11 marks			

n	1	2	3	4	5	6	7	8	9
\mathcal{U}_n	60	75	90	105	120	135	150	165	180
\mathbf{S}_n	60	135	225	330	450	585	735	900	1080
Age	10	11	12	13	14	15	16	17	18
п	10	11	12	13	14	15	16	17	18
u_n	195	210	225	240	255	270	285	300	315
\mathbf{S}_n	1275	1485	1710	1950	2205	2475	2760	3060	3375
Age	19	20	21	22	23	24	25	26	27

Question Number	Sche	eme	Notes			
10. (a)	l_1 : passes through (0, 2) and (3, 7) l_2 : goes through (3, 7) and is perpendicular to l_1					
	Gradient of l_1	is $\frac{7-2}{3-0} \left(=\frac{5}{3}\right)$	$m(l_1) = \frac{7-2}{3-0}$. Allow un-sir May be implied.	nplified.	B1	
	$m(l_2) = -1$	\div their $\frac{5}{3}$	Correct application of perperule	ndicular gradient	M1	
	y - 7 = "- 0	$\frac{3}{5}$ "(x - 3)	M1: Uses $y - 7 = m(x - 3)$ gradient or uses $y = mx + c$ their changed gradient to fin	with their <u>changed</u> with $(3, 7)$ and and a value for <i>c</i>	M1A1ft	
	$y = "-\frac{3}{5}"x + c, 7 = "-$	$\frac{3}{5}"(3) + c \implies c = \frac{44}{5}$	A1ft: Correct ft equation for gradient (this is dependent	their perpendicular on both M marks)	A 1	
	3x + 5y	-44 = 0	be seen in (a) and must inclu	ade "= 0".	AI	
(1)	When <i>y</i> =	$0 \ x = \frac{44}{3}$	M1: Puts $y = 0$ and finds a vector equation A1: $x = \frac{44}{3} \left(\text{ or } 14\frac{2}{3} \text{ or } 14.4 \right)$	value for x from their $\binom{1}{6}$ or exact	[5] M1 A1	
(0)	Cond	-2 -2 -2 -2 -2 -2 -2 -2	equivalent. $(y = 0 \text{ not needed})$	ed)		
	$\begin{array}{c} \text{Condone } 3x - 5y - 44 = 0 \text{ only leading to the correct answer} \\ \text{and condone coordinates written as } (0, 44/3) \text{ but allow recovery in (c)} \end{array}$					
(c)		GENERAL	APPROACH:		[2]	
	 Correct attempt at finding the area of any one of the triangles or one of the trapezia but not just one rectangle. The correct pair of 'base' and 'height' must be used for a triangle and the correct formula used for a trapezium. If Pythagoras is required, then it must be used correctly with the correct end coordinates. Note that the first three marks apply to their calculated coordinates e.g. their ⁴⁴/₄, ⁴⁴/₄, ⁶/₆ 				M1	
	etc. But t	he given coordinates m	nust be correct e.g. (0, 2) and	l (3, 7).		
	A correct numeric	al expression for the are coor	ea of one triangle or one trap dinates.	ezium for their	A1ft	
	Combines the corre numerical expressions f M1 m	ect areas together correct for areas have been incon ay still be given. Depen	tly for their chosen "way". Norrectly simplified before combined dent on the first method mathematical sectors and the sectors	ote that if correct bining them, then this urk.	dM1	
	Correct numerical exp	ression for the area of O	<i>RQP</i> . The expressions must	be fully correct for	A1	
	Correct exact area e.g. $54\frac{1}{3}$, $\frac{163}{3}$, $\frac{326}{6}$, 54.3 or any exact equivalent				A1	
	Shape	Vertices	Numerical Expression	Exact Area		
	Triangle	TRQ	$\frac{1}{2} \times 7 \times \left(\frac{44}{3} - 3\right)$	$\frac{245}{6}$		
	Triangle	SPO	$\frac{1}{2} \times \frac{6}{5} \times 2$	$\frac{6}{5}$		
	Triangle	PWQ	$\frac{1}{2} \times \left(\frac{44}{5} - 2\right) \times 3$	$\frac{51}{5}$		
	Triangle	PVQ	$\frac{1}{2} \times (7-2) \times 3$	$\frac{15}{2}$		

	Triangle	VWQ	$\frac{1}{2} \times \left(\frac{44}{5} - 7\right) \times 3$	$\frac{27}{10}$	
	Triangle	QUR	$\frac{1}{2} \times \left(\frac{44}{3} - 3\right) \times 7$	$\frac{245}{6}$	
	Triangle	PQR	$\frac{1}{2} \times \sqrt{34} \times \frac{7}{3} \times \sqrt{34}$	$\frac{119}{3}$	
	Triangle	PNQ	$\frac{\frac{1}{2} \times \frac{34}{3} \times 5}{\frac{1}{2} \times \frac{34}{3} \times 5}$	$\frac{85}{3}$	
	Triangle	OPQ	$\frac{1}{2} \times 2 \times 3$	3	1
	Triangle	OQR	$\frac{1}{2} \times \frac{44}{3} \times 7$	$\frac{154}{3}$	
	Triangle	OWR	$\frac{\frac{1}{2} \times \frac{44}{3} \times \frac{44}{5}}{1}$	$\frac{968}{15}$	
	Triangle	SQR	$\frac{\frac{1}{2}\times\left(\frac{44}{3}+\frac{6}{5}\right)\times7}{1}$	$\frac{833}{15}$	
	Triangle	OPR	$\frac{1}{2} \times \frac{44}{3} \times 2$	$\frac{44}{3}$	
	Trapezium	OPQT	$\frac{1}{2}(2+7)\times 3$	$\frac{27}{2}$	
	Trapezium	OPNR	$\frac{\frac{1}{2} \times \left(\frac{34}{3} + \frac{44}{3}\right) \times 2}{2}$	26	
	Trapezium	OVQR	$\frac{1}{2} \times \left(3 + \frac{44}{3}\right) \times 7$	$\frac{371}{6}$	
		EXA	MPLES		
(c)	 	W	AY 1		
	$OPQT = \frac{1}{2}$	$(2+7) \times 3$	M1: Correct method for <i>OP</i>	QT or TRQ	4
	or $TRQ = \frac{1}{2} \times 7 \times \left(\frac{44}{3} - 3\right)$		A1ft: $OPQT = \frac{1}{2}(2+7) \times 3$ $TRQ = \frac{1}{2} \times 7 \times \left(\frac{44}{3} - 3\right)$	or	M1A1ft
	$\frac{1}{2}(2+7) \times 3 + \frac{1}{2}$	$\cdot \times 7 \times \left(\frac{44}{3} - 3\right)$	dM1: Correct numerical con that have been calculated co A1: Fully Correct numerica area <i>ORQP</i>	abination of areas rrectly al expression for the	dM1A1
	54	$\cdot \frac{1}{3}$	Any exact equivalent e.g. $\frac{16}{2}$	$\frac{53}{3}, \frac{326}{6}, 54.3$	A1

W	AY 2	
$PQR = \frac{1}{2} \times \sqrt{34} \times \frac{7}{2} \times \sqrt{34}$	M1: Correct method for <i>PQR</i> or <i>OPR</i>	
or	A1ft: $PQR = \frac{1}{2} \times \sqrt{34} \times \frac{7}{3} \times \sqrt{34}$ or	M1A1ft
$OPR = \frac{1}{2} \times \frac{44}{3} \times 2$	$OPR = \frac{1}{2} \times \frac{44}{3} \times 2$	
$\frac{1}{2} \times \sqrt{34} \times \frac{7}{3} \times \sqrt{34} + \frac{1}{2} \times \frac{44}{3} \times 2$	dM1: Correct numerical combination of areas that have been calculated correctly A1: Fully Correct numerical expression for the area <i>ORQP</i>	dM1A1
54 <u>1</u> 3	Any exact equivalent e.g. $\frac{163}{3}$, $\frac{326}{6}$, 54.3	A1

W	AY 3	
$SQR = \frac{1}{2} \times 7 \times \frac{238}{12}$	M1: Correct method for SQR or SPO	
2 15 or	A1ft: $SQR = \frac{1}{2} \times 7 \times \frac{238}{15}$ or	M1A1ft
$SPO = \frac{1}{2} \times \frac{6}{5} \times 2$	$SPO = \frac{1}{2} \times \frac{6}{5} \times 2$	
$\frac{1}{2} \times 7 \times \frac{238}{15} - \frac{1}{2} \times \frac{6}{5} \times 2$	dM1: Correct numerical combination of areas that have been calculated correctly A1: Fully Correct numerical expression for the area <i>ORQP</i>	dM1A1
54 <u>1</u> <u>3</u>	Any exact equivalent e.g. $\frac{163}{3}$, $\frac{326}{6}$, 54.3	A1

WAY 4		
$PVQ = \frac{1}{2} \times 5 \times 3$	M1: Correct method for PVQ or QUR	
or	A1ft: $PVQ = \frac{1}{2} \times 5 \times 3$	M1A1ft
$QUR = \frac{1}{2} \times 7 \times \frac{35}{3}$	or $QUR = \frac{1}{2} \times 7 \times \frac{35}{3}$	
$OVUR7 \times \frac{44}{3} - \frac{1}{2} \times 5 \times 3 - \frac{1}{2} \times 7 \times \frac{35}{3}$	dM1: Correct numerical combination of areas that have been calculated correctly A1: Fully Correct numerical expression for the area <i>ORQP</i>	dM1A1
54 1 3	Any exact equivalent e.g. $\frac{163}{3}$, $\frac{326}{6}$, 54.3	A1

$$7 \times \frac{"44"}{3} - \frac{1}{2} \times 5 \times 3 - \frac{1}{2} \times \frac{"35"}{3} \times 7$$
$$= \frac{308}{3} - \frac{15}{2} - \frac{245}{6} = \frac{326}{6}$$

WAY 5		
$OWR = \frac{1}{2} \times \frac{44}{2} \times \frac{44}{5}$	M1: Correct method for OWR or PWQ	
2 3 5 or $PWQ = \frac{1}{2} \times \left(\frac{44}{5} - 2\right) \times 3$	A1ft: $OWR = \frac{1}{2} \times \frac{44}{3} \times \frac{44}{5}$ or $PWQ = \frac{1}{2} \times \left(\frac{44}{5} - 2\right) \times 3$	M1A1ft
$\frac{1}{2} \times \frac{44}{3} \times \frac{44}{5} - \frac{1}{2} \times \left(\frac{44}{5} - 2\right) \times 3$	dM1: Correct numerical combination of areas that have been calculated correctly A1: Fully Correct numerical expression for the area <i>ORQP</i>	dM1A1
54 <u>1</u>	Any exact equivalent e.g. $\frac{163}{3}$, $\frac{326}{6}$, 54.3	Al

$$\frac{1}{2} \times \frac{\text{"44"}}{5} \times \frac{\text{"44"}}{3} - \frac{1}{2} \times \left(\frac{44}{5} - 2\right) \times 3$$
$$= \frac{968}{15} - \frac{51}{5} = \frac{163}{3}$$

WA	Y 6	
1 (34 44)	M1: Correct method for OPNR or PNQ	
$OPNR = \frac{1}{2} \times \left(\frac{1}{3} + \frac{1}{3}\right) \times 2$ or	A1ft: $OPNR = \frac{1}{2} \times \left(\frac{34}{3} + \frac{44}{3}\right) \times 2$	M1A1ft
$PNQ = \frac{1}{2} \times \frac{34}{3} \times 5$	or $PNQ = \frac{1}{2} \times \frac{34}{3} \times 5$	
$\frac{1}{2} \times \left(\frac{34}{3} + \frac{44}{3}\right) \times 2 + \frac{1}{2} \times \frac{34}{3} \times 5$	dM1: Correct numerical combination of areas that have been calculated correctly A1: Fully Correct numerical expression for the area <i>ORQP</i>	dM1A1
$54\frac{1}{3}$	Any exact equivalent e.g. $\frac{163}{3}$, $\frac{326}{6}$, 54.3	A1

$$\frac{1}{2} \times \left(\frac{"34"}{3} + \frac{"44"}{3}\right) \times 2 + \frac{1}{2} \times \frac{"34"}{3} \times 5$$
$$= \frac{156}{6} + \frac{170}{6} = \frac{326}{6}$$

WA	Y 7	
	M1: Correct method for OPQ or OQR	
$OPQ = \frac{1}{2} \times 3 \times 2$ or $OQR = \frac{1}{2} \times \frac{44}{3} \times 7$	A1ft: $OPQ = \frac{1}{2} \times 3 \times 2$ or $OQR = \frac{1}{2} \times \frac{44}{3} \times 7$	M1A1ft
$\frac{1}{2} \times 3 \times 2 + \frac{1}{2} \times \frac{44}{3} \times 7$	dM1: Correct numerical combination of areas that have been calculated correctly A1: Fully Correct numerical expression for the area <i>ORQP</i>	dM1A1
$54\frac{1}{3}$	Any exact equivalent e.g. $\frac{163}{3}$, $\frac{326}{6}$, 54.3	A1

WA	Y 8	
$\frac{1}{2} \begin{vmatrix} 0 & \frac{44}{3} & 3 & 0 & 0 \\ 0 & 0 & 7 & 2 & 0 \end{vmatrix}$	M1: Uses the vertices of the quadrilateral to form a determinant $\begin{vmatrix} 0 & \frac{44}{3} & 3 & 0 & 0 \\ 0 & 0 & 7 & 2 & 0 \end{vmatrix}$ A1ft: $\frac{1}{2} \begin{vmatrix} 0 & \frac{44}{3} & 3 & 0 & 0 \\ 0 & 0 & 7 & 2 & 0 \end{vmatrix}$	M1A1ft
$\frac{1}{2} \left(\frac{44}{3} \times 7 + 3 \times 2 \right)$	dM1: Fully correct determinant method with no errors A1: Fully Correct numerical expression for the area <i>ORQP</i>	dM1A1
54 <u>1</u>	Any exact equivalent e.g. $\frac{163}{3}$, $\frac{326}{6}$, 54.3	A1

There will be other ways but the same approach to marking should be applied.

Question Number	Scheme		Marks
11. (a)	$y = 2x^3 + kx^2 + 5x + 6$		
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \int 6x^2 + 2kx + 5$	M1: $x^n \rightarrow x^{n-1}$ for one of the terms including $6 \rightarrow 0$ A1: Correct derivative	M1 A1
		1	[2]
(b)	Gradient of given line is $\frac{17}{2}$	Uses or states $\frac{17}{2}$ or equivalent e.g. 8.5. Must be stated or used in (b) and not just seen as part of $y = \frac{17}{2}x + \frac{1}{2}$.	B1
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{x=-2} = 6\left(-2\right)^2 + 2k\left(-2\right) + 5$	Substitutes $x = -2$ into their derivative (not the curve)	M1
	$"24 - 4k + 5" = "\frac{17}{2}" \Longrightarrow k = \frac{41}{8}$	dM1: Puts their expression = their $\frac{17}{2}$ (Allow BOD for 17 or -17 but not the normal gradient) and solves to obtain a value for <i>k</i> . Dependent on the previous method mark . A1: $\frac{41}{8}$ or $5\frac{1}{8}$ or 5.125	dM1 A1
	Note	:	
	$6x^2 + 2kx + 5 = \frac{17}{2}x + \frac{1}{2}$ scores no marks on its	own but may score the first M mark if they	
	substitute $x = -2$ into the lhs. If they rearrange this no mar	equation and then substitute $x = -2$, this scores ks.	
			[4]
(c)	$y = -16 + 4k - 10 + 6 = 4"k" - 20 = \frac{1}{2}$	M1: Substitutes $x = -2$ and their numerical k into $y =$ A1: $y = \frac{1}{2}$	M1 A1
	Allow the marks for part (c)) to be scored in part (b).	503
(d)	$y - "\frac{1}{2}" = "\frac{17}{2}" (x - 2) \Longrightarrow -17x + 2y - 35 = 0$ or $y = "\frac{17}{2}" x + c \Longrightarrow c = \Longrightarrow -17x + 2y - 35 = 0$	M1: Correct attempt at linear equation with their 8.5 gradient (not the normal gradient) using $x = -2$ and their $\frac{1}{2}$	[2] M1 A1
	or 2 y - 17 x = 1 + 34 \Rightarrow -17 x + 2 y - 35 = 0	A1: cao (allow any integer multiple)	
			[2]
			10 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R 0RL $\,$